49 research outputs found

    Localization of diagnostically relevant regions of interest in whole slide images

    Get PDF
    Whole slide imaging technology enables pathologists to screen biopsy images and make a diagnosis in a digital form. This creates an opportunity to understand the screening patterns of expert pathologists and extract the patterns that lead to accurate and efficient diagnoses. For this purpose, we are taking the first step to interpret the recorded actions of world-class expert pathologists on a set of digitized breast biopsy images. We propose an algorithm to extract regions of interest from the logs of image screenings using zoom levels, time and the magnitude of panning motion. Using diagnostically relevant regions marked by experts, we use the visual bag-of-words model with texture and color features to describe these regions and train probabilistic classifiers to predict similar regions of interest in new whole slide images. The proposed algorithm gives promising results for detecting diagnostically relevant regions. We hope this attempt to predict the regions that attract pathologists' attention will provide the first step in a more comprehensive study to understand the diagnostic patterns in histopathology. © 2014 IEEE

    Localization of Diagnostically Relevant Regions of Interest in Whole Slide Images: a Comparative Study

    Get PDF
    Whole slide digital imaging technology enables researchers to study pathologists’ interpretive behavior as they view digital slides and gain new understanding of the diagnostic medical decision-making process. In this study, we propose a simple yet important analysis to extract diagnostically relevant regions of interest (ROIs) from tracking records using only pathologists’ actions as they viewed biopsy specimens in the whole slide digital imaging format (zooming, panning, and fixating). We use these extracted regions in a visual bag-of-words model based on color and texture features to predict diagnostically relevant ROIs on whole slide images. Using a logistic regression classifier in a cross-validation setting on 240 digital breast biopsy slides and viewport tracking logs of three expert pathologists, we produce probability maps that show 74 % overlap with the actual regions at which pathologists looked. We compare different bag-of-words models by changing dictionary size, visual word definition (patches vs. superpixels), and training data (automatically extracted ROIs vs. manually marked ROIs). This study is a first step in understanding the scanning behaviors of pathologists and the underlying reasons for diagnostic errors. © 2016, Society for Imaging Informatics in Medicine

    Multi-instance multi-label learning for whole slide breast histopathology

    Get PDF
    Digitization of full biopsy slides using the whole slide imaging technology has provided new opportunities for understanding the diagnostic process of pathologists and developing more accurate computer aided diagnosis systems. However, the whole slide images also provide two new challenges to image analysis algorithms. The first one is the need for simultaneous localization and classification of malignant areas in these large images, as different parts of the image may have different levels of diagnostic relevance. The second challenge is the uncertainty regarding the correspondence between the particular image areas and the diagnostic labels typically provided by the pathologists at the slide level. In this paper, we exploit a data set that consists of recorded actions of pathologists while they were interpreting whole slide images of breast biopsies to find solutions to these challenges. First, we extract candidate regions of interest (ROI) from the logs of pathologists' image screenings based on different actions corresponding to zoom events, panning motions, and fixations. Then, we model these ROIs using color and texture features. Next, we represent each slide as a bag of instances corresponding to the collection of candidate ROIs and a set of slide-level labels extracted from the forms that the pathologists filled out according to what they saw during their screenings. Finally, we build classifiers using five different multi-instance multi-label learning algorithms, and evaluate their performances under different learning and validation scenarios involving various combinations of data from three expert pathologists. Experiments that compared the slide-level predictions of the classifiers with the reference data showed average precision values up to 62% when the training and validation data came from the same individual pathologist's viewing logs, and an average precision of 64% was obtained when the candidate ROIs and the labels from all pathologists were combined for each slide. © 2016 SPIE

    Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships

    Get PDF
    Aim: Understanding the spatial distribution of high priority habitats and developing predictive models using climate and environmental variables to replicate these distributions are desirable conservation goals. The aim of this study was to model and elucidate the contributions of climate and topography to the distribution of a priority blanket bog habitat in Ireland, and to examine how this might inform the development of a climate change predictive capacity for peat-lands in Ireland. Methods: Ten climatic and two topographic variables were recorded for grid cells with a spatial resolution of 1010 km, covering 87% of the mainland land surface of Ireland. Presence-absence data were matched to these variables and generalised linear models (GLMs) fitted to identify the main climatic and terrain predictor variables for occurrence of the habitat. Candidate predictor variables were screened for collinearity, and the accuracy of the final fitted GLM was evaluated using fourfold cross-validation based on the area under the curve (AUC) derived from a receiver operating characteristic (ROC) plot. The GLM predicted habitat occurrence probability maps were mapped against the actual distributions using GIS techniques. Results: Despite the apparent parsimony of the initial GLM using only climatic variables, further testing indicated collinearity among temperature and precipitation variables for example. Subsequent elimination of the collinear variables and inclusion of elevation data produced an excellent performance based on the AUC scores of the final GLM. Mean annual temperature and total mean annual precipitation in combination with elevation range were the most powerful explanatory variable group among those explored for the presence of blanket bog habitat. Main conclusions: The results confirm that this habitat distribution in general can be modelled well using the non-collinear climatic and terrain variables tested at the grid resolution used. Mapping the GLM-predicted distribution to the observed distribution produced useful results in replicating the projected occurrence of the habitat distribution over an extensive area. The methods developed will usefully inform future climate change predictive modelling for Irelan

    Pyknodysostosis

    No full text
    corecore